

3-Year Results from the COMPARE-ABSORB trial

Pieter C. Smits On behalf of the COMPARE-ABSORB investigators

COMPARE-ABSORB

ABSORB bioresorbable scaffold vs. Xience metallic stent

for prevention of restenosis following PCI

in patients at high risk of restenosis.

Pieter C. Smits

I have the following financial relationships:

Recipient of institutional research grants from Abbott Vascular, Daiichy Sankyo, SMT and honoria /consulting/speakers fees from Abbott Vascular, Abiomed, Astra-Zeneca, Microport and Terumo

Rationale for COMPARE ABSORB

 We hypothesised that the use of Bioresorable Vascular Scaffold (BVS) in a high-risk population for re-stenosis might demonstrate better long-term outcomes compared to metallic DES after full BVS resorption

 Second, a specific BVS implantation technique was never employed in previous BVS RCT's from the start. In COMPARE-ABSORB a dedicated optimal implantation technique for BVS was mandated from the start

Rationale for long-term follow-up

Previous trials with BVS showed an increase in myocardial infarction and device thrombosis rates up to 3 year follow-up

Meta-analysis 4 RCT's

Outcome	Up to 1 year			1 up to 2 years			2 up to 3 years					
	BVS	DES	OR (95% CI)	Р	BVS	DES	OR (95% CI)	Р	BVS	DES	OR (95% CI)	Р
TLF (%)	6.39	5.15	1.24 (0.97-1.58)	0.09	4.43	2.55	1.55 (0.98-2.46)	0.06	1.20	0.34	2.75 (0.97-7.78)	0.06
All-cause mortality (%)	1.17	1.49	0.90 (0.33-2.43)	0.83	1.10	1.73	0.65 (0.4-1.05)	0.08	0.20	1.88	0.14 (0.01-1.46)	0.10
Myocardial infarction (%)	5.15	3.50	1.38 (1.04-1.83)	0.03	2.20	1.01	2.17 (1.30-3.62)	0.003	1.36	0.94	1.18 (0.59-2.37)	0.64
ID-TLR (%)	3.08	2.57	1.26 (0.90-1.77)	0.18	2.87	1.59	1.67 (0.97-2.87)	0.06	2.11	1.02	1.79 (0.62-5.15)	0.28
Def/ prob device thrombosis (%)	1.60	0.61	2.45 (1.35-4.46)	0.03	0.86	0.10	4.75 (1.63-13.82)	0.004	0.53	0.00	3.79 (0.67-21.37)	0.13

*ABSORB II, ABSORB III, ABSORB China, ABSORB Japan. Def/ prob: definite/probable; OR: Odds ratio; ID-TLR: ischemia driven target lesion revascularization; TLF: target lesion failure

Felix et al. PLoS One 2018 13(5): e0197119

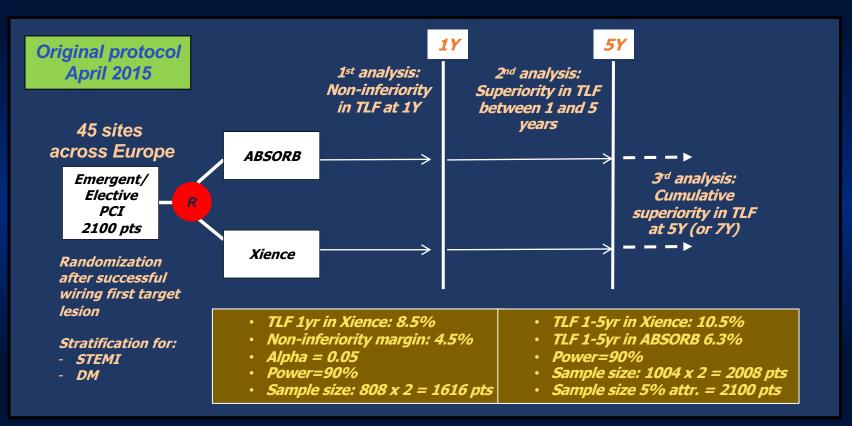
Key features of COMPARE-ABSORB

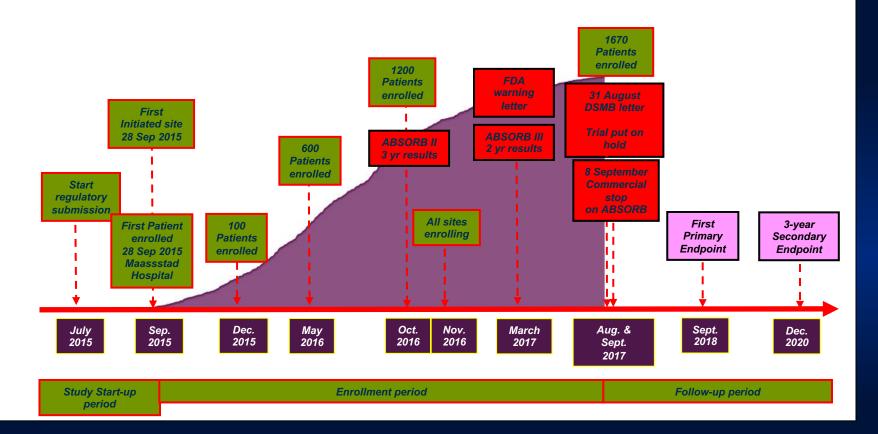
Specific patient population and implantation technique

- To study a patient population which potentially might benefit the most by the vascular restoration therapy concept on the long term
- Selection of specific patients and complex lesions not investigated in previous RCT's like: STEMI, acute non-STEMI, bifurcations and long lesions and CTO's

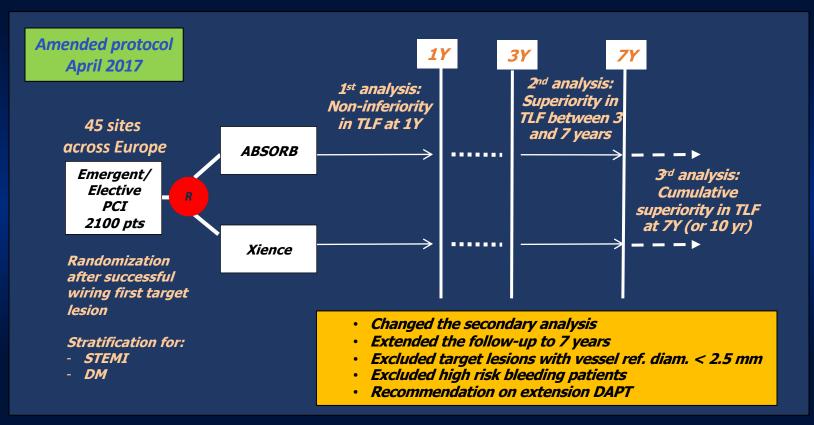
• PSP implantation technique from the start

- Mandatory pre-dilatation 1:1 balloon artery ratio
- IVUS / OCT / QCA guidance for treatment target vessels < 2.75 mm highly recommended
- Mandatory high pressure (> 16 atm.) post-dilatation
- Usage off NC balloons up to 0.50 mm larger than the scaffold for post-dilatation highly recommended


COMPARE-ABSORB Inclusion criteria


- Patients with *at <u>least one</u>* of the following:
 - i) High-risk characteristics for restenosis
 - Known diabetes and/or multivessel disease of which more than one *de-novo* target lesion to be treated with the study scaffold/stent
 - ii) Complex *de-novo* target lesion
 - Lesion length >28 mm
 - Small vessels: RVD between 2.25-2.75 mm
 - Lesion with pre-existing total occlusion
 - Bifurcation with single device strategy

Trial design (original)


Chang et al. Cardiovasc Revasc Med. 2019 Jul;20(7):577-582

Trial design (revised)

Chang et al. Cardiovasc Revasc Med. 2019 Jul;20(7):577-582

Base-line characteristics

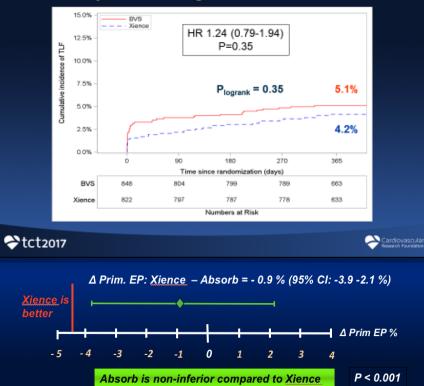
Risk factors	ABSORB 848 patients	XIENCE 822 patients	P value
Age [yr] ± SD	61.9 ± 9.4	62.2 ± 9.0	0.61
Male	79.5% (674)	76.3% (627)	0.13
Diabetes mellitus	34.6% (293)	36.1% (296)	0.57
Current smoker	28.8% (241)	26.9% (217)	0.41
Previous smoker	51.9% (289)	50.1% (280)	0.55
Hypercholesterolemia	66.3% (546)	65.8% (531)	0.88
Hypertension	71.6% (601)	69.2% (567)	0.31
Family history of CAD	36.2% (278)	31.7% (241)	0.07
Previous PCI	27.0% (229)	20.2% (238)	0.38
Previous CABG	1.9% (16)	2.6% (21)	0.41
Previous MI	18.2% (154)	20.2% (166)	0.29
Previous stroke	3.4% (29)	4.8% (39)	0.18
Renal insufficiency	3.9% (33)	6.0% (49)	0.054
L V ejection fraction [%] ± SD	56.4 ± 10.5	56.3 ±10.2	0.83

Base-line characteristics

Indication and treatment	ABSORB 848 patients 1242 target lesions	XIENCE 822 patients 1213 target lesions	P value
Acute coronary syndrome (ACS)	52.1% (442)	48.7% (400)	0.17
STEMI	13.0% (110)	12.5% (103)	0.88
Non-STEMI treatment < 72 hours	13.3% (113)	12.4% (102)	0.57
Multi-vessel treatment	35.7% (303)	37.7% (301)	0.56
Mean target lesions treated ± SD	1.5 ± 0.7	1.5 ± 0.7	0.67
Mean Syntax score ± SD	12.2 ± 7.1	12.2 ± 7.3	0.88
Bifurcation lesions	20.5% (254)	22.2 (269)	0.30
Pre-existing total occlusions	14.6% (181)	13.1% (159)	0.32
Long lesions (>28mm)	25.2% (313)	31.5% (370)	<0.001
Small vessel lesions (>2.25 ≤ 2.75 mm)	22.5% (279)	30.5% (370)	<0.001

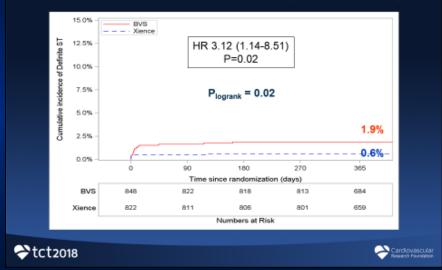
Procedural characteristics

Vessel and lesion treatment	ABSORB 1242 target lesions 962 procedures	XIENCE 1213 target lesions 904 procedures	P value
Pre-dilatation	96.5% (1198)	78.6% (1213)	<0.001
Largest balloon (mm ± SD)	3.0 ± 1.0	3.0 ± 0.7	0.96
Non-compliant balloon used	67.9% (814)	52.9% (504)	<0.001
Max. pressure used (Atm.)	15.3 ± 3.5	14.8 ± 3.4	0.002
Cutting / scoring balloon	5.8% <mark>(72</mark>)	2.3% (28)	<0.001
Mean study devices used	1.3 ± 0.7	1.3 ± 0.6	0.07
Post-dilatation	90.7% (1497)	58.3% (906)	<0.001
Non-compliant balloon used	93.0% (1392)	85.5% (775)	<0.001
Largest balloon diameter (mm ± SD)	3.3 ± 0.4	3.3 ± 0.5	0.97
Max. pressure largest balloon (Atm)	17.6 ± 3.7	17.5 ± 3.7	0.76
Max. pressure \geq 16 Atm	79.7% (1193)	79.5% (720)	0.92
IVUS performed post	14.3% (138)	14.3% (129)	1.0
OCT performed post	9.4% (90)	2.7% (24)	<0.001

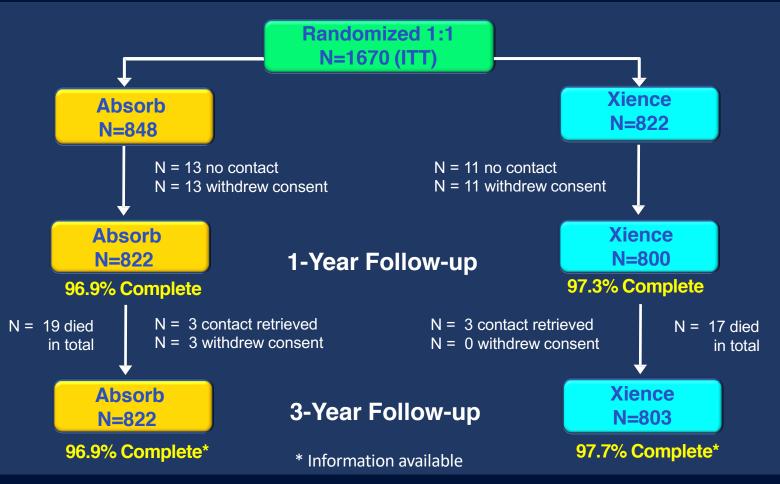


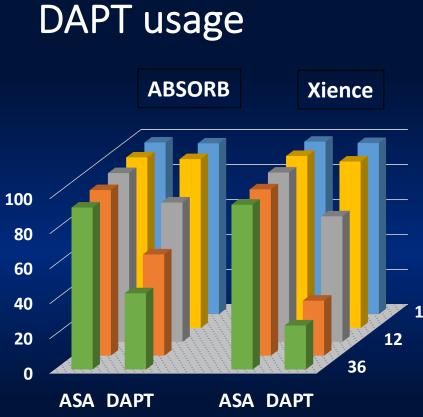
2018

1 year results


TLF @ 1 year

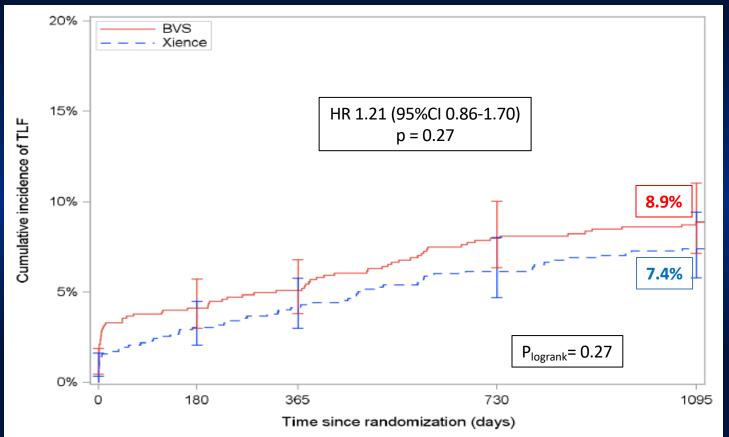
Cardiac death, target vessel myocardial infarction, clinically-indicated target lesion revascularization

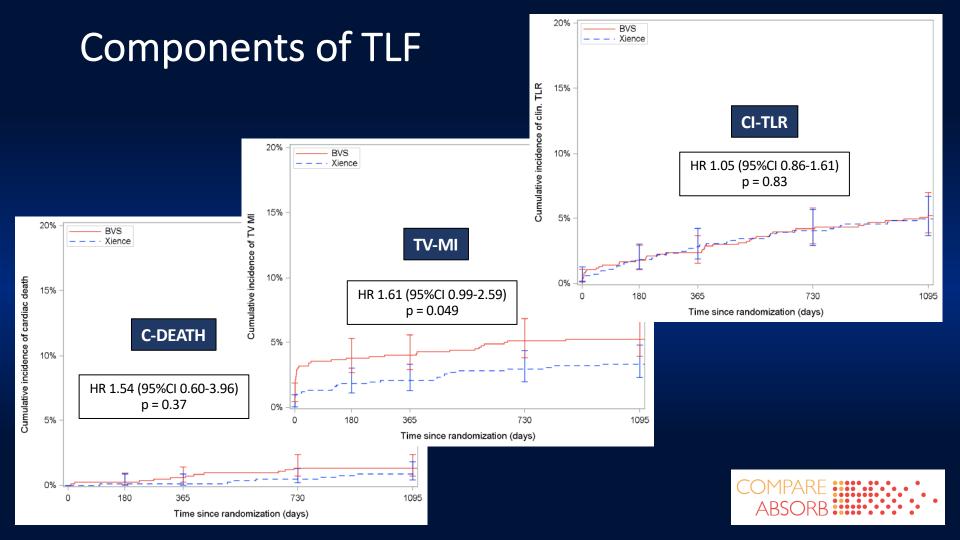

Stent/Scaffold Thrombosis @ 1 year


Definite Stent/Scaffold Thrombosis (ARC definition)

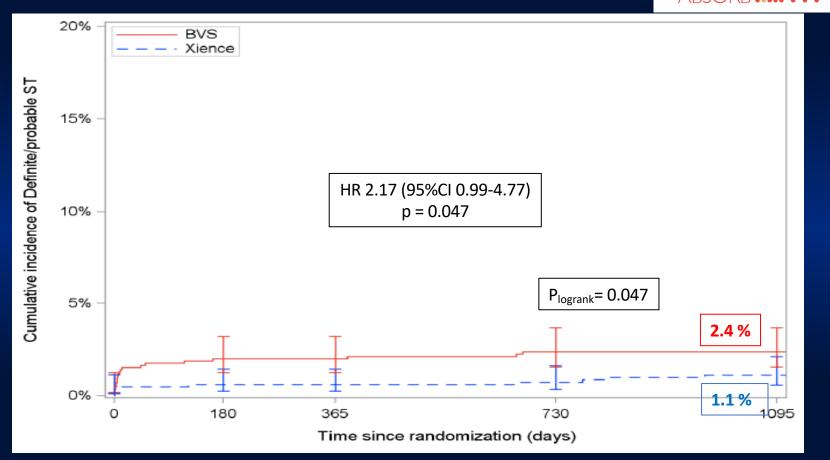
Smits et al. EuroIntervention 2020;16:645-653

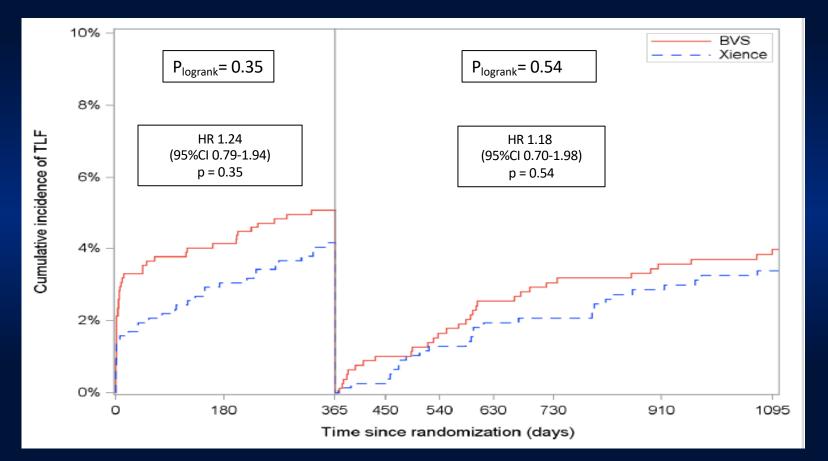
Study Flow and Follow-up


36 24 12 6 1

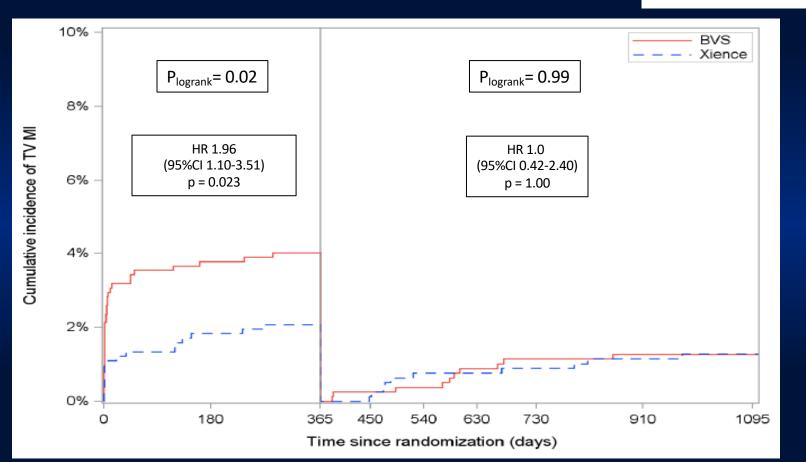

Months

Characteristic	Absorb (N = 848)	Xience (N = 822)	p- Value
DAPT (ASA + Clopi or Tica or Prasu)	43.5%	25.1%	<0.001
ASA	92,5%	94.1%	0.23
Clopidogrel	33.9%	19.1%	<0.001
Ticagrelor	13.1%	8.6%	0.005
Prasugrel	2.6%	1.4%	0.11
OAC + ASA or Clopi or Tica or Prasu	4.0%	2.4%	0.09

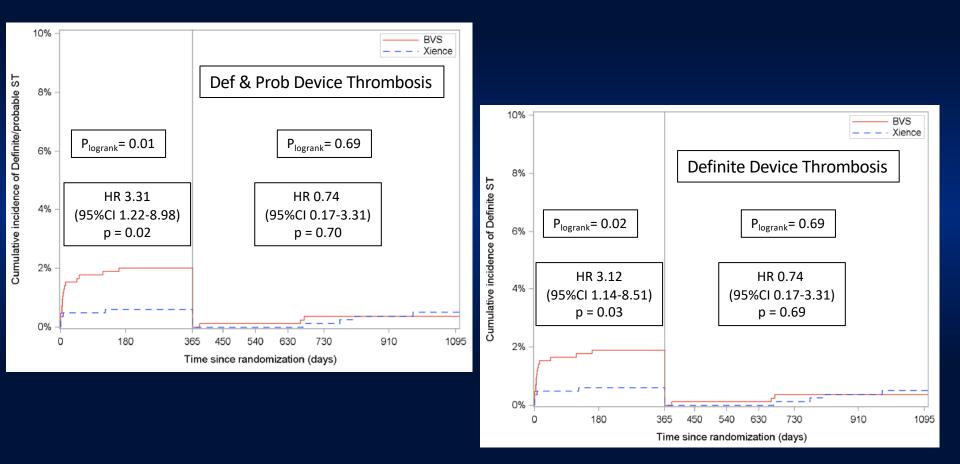

3-year TLF C-Death, TV-MI, CI-TLR



Definite and probable device thrombosis



1-year landmark analysis: TLF



1-year landmark analysis: TV-MI

1-year landmark analysis: device thrombosis

Conclusions

- In a more-comer population at high-risk for restenosis Target Lesion Failure (TLF) rates were not significant different between Absorb and Xience (8.9% versus 7.4%, p=0.27) at 3 year follow-up
- In the 1-year landmark analyses, TLF, TV-MI and Device Thrombosis (definite and def&prob) rates were similar for both devices beyond 1 year
- Whether the absence of increased risk of very-late scaffold thrombosis and TV-MI was prevented by a dedicated implantation technique or prolonged DAPT remains to be determined
- Follow-up of 7-10 year within COMPARE-ABSORB will show whether Absorb has long-term advantages above the metallic Xience stent

Stephan ACHENBACH

> Emanuele BARBATO

Guiseppe TARANTINI

Tommaso GORI

Victor коска

Jan TIJSSEN

Nick WEST

DUDEK

Javier **ESCANED**

Peter

SMITS

Bernard

CHEVALIER

Dariusz

Thanks to the 45 participating sites

Robert-Jan

VAN GEUNS

Trial Organisation

Grant giver : Abbott Vascular

Grant receiver and trial sponsor: Maasstad Hospital, Rotterdam

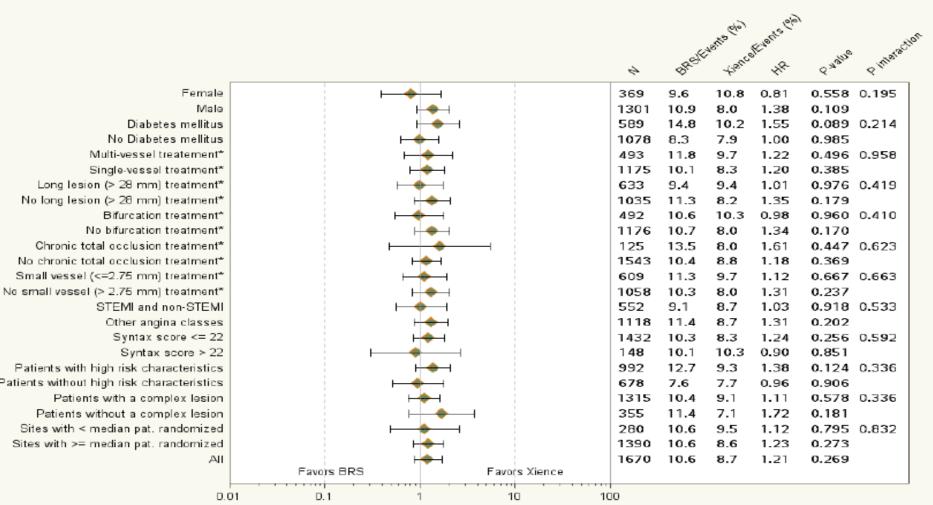
Trial conductor : CERIC, Geneva

CRO: CERC, Paris

Corelab and Statistics : Cardialyis, Rotterdam

DSMB : Stefan James, Eric Boersma, Michel Bertrand

Senior Consultant : Patrick Serruys


Lead Clinical Trial Managers: Ute Windhovel, Elodie Trouche, Ria van Vliet

Patients with high risk characteristics Patients without high risk characteristics Patients without a complex lesion Sites with < median pat, randomized Sites with >= median pat, randomized

*Analysis based on target lesions